Search results

1 – 3 of 3
Article
Publication date: 18 February 2022

Muhammad Umar Nazir, Muhammad Usman Javaid, Khubab Shaker, Yasir Nawab, Tanveer Hussain and Muhammad Umair

This paper aims to develop bilayer woven fabrics with different picking sequences with enhanced comfort without any change in the constituent materials.

Abstract

Purpose

This paper aims to develop bilayer woven fabrics with different picking sequences with enhanced comfort without any change in the constituent materials.

Design/methodology/approach

Six bilayer woven fabrics were produced on Dobby loom with 3/1 twill weave using micro-polyester yarn. Three different picking sequences, i.e. single pick insertion (SPI), double pick insertion (DPI) and three pick insertion (3PI), were used in both face and back layers. The effect of picking sequence on air permeability (AP), volume porosity, thermal resistance and overall moisture management capability (OMMC) of the samples were analyzed.

Findings

The results showed that 3PI–3PI picking sequence gives the highest OMMC, AP and thermal resistance in bilayer woven fabrics and the least results exhibited by SPI–SPI picking sequence.

Research limitations/implications

This research uses a bilayer woven system that develops channels and trapes the air causing higher thermal resistance; therefore, applicable for winter sports clothing rather than for summer wear. Developed bilayer woven fabrics can be used in winter sportswear to improve the comfort of the wearer and reduce fatigue during activity.

Originality/value

Authors have developed bilayer fabrics by changing the picking sequences, i.e. SPI, DPI and 3PI of weft yarns in both layers and compared their thermo-physiological comfort properties.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 July 2018

Adeela Nasreen, Muhammad Umair, Khubab Shaker, Syed Talha Ali Hamdani and Yasir Nawab

The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air…

Abstract

Purpose

The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air permeability and thickness of fabrics.

Design/methodology/approach

Total 24 fabrics samples were developed using two 3D structures and two weft materials. In warp direction cotton (CT) yarn and in weft direction polypropylene (PP) and polyester (PET) were used. Air permeability, thickness and UPF testings were performed and relationship among fabric layers, air permeability, thickness and UPF was developed.

Findings

UPF and thickness of fabrics increases with number of fabric layers, whereas air permeability decreases with the increase in number of fabric layers. Furthermore, change of multilayer structure from angle interlock to orthogonal interlock having same base weave does not give significant effect on UPF. However, change of material from polyester (PET) to polypropylene (PP) has a dominant effect on UPF. Minimum of three layers of cotton/polyester fabric, without any aid of ultraviolet radiation (UV) resistant coating, are required to achieve good. Cotton/polyester fabrics are more appropriate for outdoor application due to their long-term resistance with sunlight exposure.

Originality/value

Long-term exposure to UV is detrimental. So, there is need of proper selection of material and fabric to achieve ultraviolet protection. 3D fabrics have yarns in X, Y as well as in Z directions which provide better ultraviolet protection as compared to two dimensional (2D) fabrics. In literature, mostly work was done on ultraviolet protection of 2D fabrics and surface coating of fabrics. There is limited work found on UPF of 3D woven fabrics.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 February 2022

Muhammad Umair, Muhammad Usman Javaid, Yasir Nawab, Madeha Jabbar, Shagufta Riaz, Hafiz Affan Abid and Khubab Shaker

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Abstract

Purpose

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Design/methodology/approach

This work includes the development of 36 woven samples with two weave designs (1/1 plain and 3/1 twill), three picking sequences (single, double and three pick insertion) and six different weft yarn materials (cotton, polyester having 48 filaments, polyester with 144 filaments, spun coolmax having Lycra in core and coolmax in sheath, filament coolmax and polypropylene). The thermal conductivity was measured using ALAMBETA tester.

Findings

The results showed that weft yarn material, weave design and picking sequence have a meaningful impact on the thermal conductivity of woven fabric. The value of thermal conductivity was lowest for the fabrics with three pick insertion and 3/1 twill weave in all weft yarn materials.

Research limitations/implications

Plain woven fabric with single pick insertion is feasible for summer wear to enhance the comfort of wearer. By changing the warp yarn grouping and material, improved thermal conductivity/resistance can also be achieved.

Originality/value

The authors have studied the combined effect of different weft yarn materials with different picking sequences and different weave designs on thermal conductivity of the woven fabrics.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 3 of 3